
 ____ ____________________________
 Basic / | / // \ \
 / | / // /\ \ _________\
 / |/ // / \ \ \
 / /| /| //__/______\ \ Cracking
 / / | / | //____________\ __________
 / / | / | // / \ \ \
 /____/ | / |//__/ ________________\

 Part III: Whimsy 1.1.1, a Hermes External
 by The Observer, released 12/7/95

Welcome back to Basic MacCracking! A bit after I finished part II, oleBuzzard
mentioned that no one had been able to crack some Hermes externals, and that
people would probably be interested if I did. The first one of these I've
gotten through through was Whimsy 1.1.1.

What is it?
Whimsy pops up random messages at logon, logoff, and welcome times during a
Hermes session. However, until you cough up the $10 registration fee, it will
sometimes slip in a notice that your sysop hasn't registered this copy of
Whimsy, and would you please email him and suggest he do so.

Stupid program.
Yeah, that's what I thought too. Let's take a peek at the code with
Resorcerer.

Uh-oh. This is a Hermes external, and all it has is a big XHRM resource. If we
can't get beyond a hex representation of this thing's code, we're in trouble.
So let's copy the entire XHRM into a CODE resource, which will let us use
Resorcerer's code editing tools on it.

The pasting works OK, except for one thing. Who knows whether this is
actually working? You can take any random data, paste it into a CODE
resource, and Resorcerer will show you its assembly equivalent. How do we know
this is good CODE? We just don't. [OK, OK--in the case of Whimsy, we do.
Whimsy's subprogram names are present in its assembly code. When I first
started looking at Hermes externals though, the one I looked at didn't have
the names, so it wasn't obvious.]

If Whimsy was not the first Hermes external we had looked at, we'd now need to
see how a Hermes external is born. Is it with some Hermes interpreter and
scripting language? Or a normal language with special compiler? What's the
deal? A logical place to find such information was the Hermes tech support
BBS, Olympus. Its number is 206-643-2874. A call here proved very helpful--I
found several files that told me all I need to know, and would even let me
write my own externals if I wanted to.

It turns out you can use Pascal, C, whatever the hell you want to make a
Hermes external. Then, according to a project file which accompanied some
source I'd downloaded, I saw it was compiled into a resource of type XHRM. I
compiled the sample code and saved the result. Then I changed the destination
resource type to CODE. The same data was produced. So it turns out all the
scary XHRM is, is a renamed CODE resource. Now that that's settled, we can

actually get down to business.

Oooh, CODE!!
So now we have a happy CODE resource. We look at the nicely-preserved
subprogram names. We notice one named RegRoutineAnnoying. The nag note is
certainly annoying. What a nice place to start.

Sure enough, RegRoutineAnnoying has a call to _TickCount, and then a call to
_Random:
movea.l $0008(a6),a3
clr.l -(sp)
_TickCount ; TB trap
move.l (sp)+,$38A8(a4)
clr.w -(sp)
_Random ; TB trap
move.w (sp)+,d7

Random is a very good way to make things happen randomly, and TickCount
provides a nice seed for generating pseudorandom numbers. Reasonable pair to
be seeing together. So now we know where it's deciding to display or not
display the nag message, right?

Not quite. Let's look at the full line with _Random in Resorcerer:
_Random ; TB trap
 | A861 | ®a

What this is is a call to Random. The two vertical lines separate the sections
of Resorcerer's screen into code, hex, and data. First is code--the decoded
assembly or toolbox calls. Next comes the hex trap number, and finally its
ASCII equivalent. We see A861 is _Random's trap number. We search the code for
this, and fine one instance besides the one above, sitting in RegRoutineCool.
Which one is it that is responsible for displaying the annoying message? (One
could make a fair guess, but let's be scientific about this.) Macsbug offers
an easy way to break at toolbox traps. We open Hermes, break into Macsbug
manually, and enter:
atb a861
Macsbug says back:
A-Trap Break at A861 (_Random) every time

As you might have guessed, we will now break into Macsbug each time _Random
(or, to be specific, the trap A861) is called. Now let's log in and see what
happens.

Boom! Macsbug breaks with the message:
A-Trap break at 00D7069C RegRoutineAnnoying+00016: A861 (_Random)

So here we are sitting in the RegRoutineAnnoying subprogram, offset 16. To
check if perhaps RegRoutineCool is called as well, we enter "g" so Macsbug
will let the Mac go on with its business. No more breaks. So
RegRoutineAnnoying is what we want to kill.

To find the place(s) RegRoutineAnnoying is called, is somewhat annoying. What
I do is use the oddly placed "Print > To Text File..." command to save the

code to a text file. Then I open this in Word, and look for the string
"annoying." The expectation is to find a jsr pointing to it. As it happens,
though, it's only referred to in one place, CheckCode offset 01F0:
lea RegRoutineAnnoying,a1

Who's Calling?
Resorcerer *says* that it's called there. It even has a branch to
RegRoutineAnnoying. Looks pretty convincing. But LEA isn't a branch, or even a
jump--it stands for Load Effective Address, and all it's doing here is placing
the address of the RegRoutineAnnoying subprogram into register a1. Despite
Resorcerer's say-so, CheckCode 01F0 is NOT calling RegRoutineAnnoying. (Take
this as further evidence that computers are stupid, and a reminder not to
trust them unquestioningly.) So what this line is doing is storing the
routine's address, to call later. But where?

To find out, we go back into Macsbug, and break once more at the _Random trap.
Once we break, we follow the procedure until rts, which sends us back from
where we were called. (This is wisdom gained first-hand from part I.) We
emerge from RegRoutineAnnoying into ShowScreen offset AE. This is the move.l
in the code below:
movea.l (a0),a0
jsr (a0)
move.l a3,(sp)
move.w #$0002,-(sp)

indicating the jsr(a0) just before it is what called RegRoutineAnnoying.
Therefore, we were correct that lea is just loading RegRoutineAnnoying's
address, to be called later.

So this is at least one spot where RegRoutineAnnoying is called. Chances are
it's the only one, but since it's using the LEA system there could be more. We
could test for this by breaking at RegRoutineAnnoying (type "br ", hit cmd-D,
choose RegRoutineAnnoying, hit return), but we still might not find all of
them. On this assumption (that we can't get all the places it's called), the
ideal solution will be to modify the RegRoutineAnnoying subprogram itself.

Innie or Outie?
Notice I keep saying subprogram. This is a neutral term for both function
(which returns a value) and procedure (which is supposed to not return
anything). RegRoutineAnnoying has to be one of these, which brings up two
possibilities--either it's self-contained, and so NOP'ing it will be an
effective crack. OR, it returns its decision as to whether or not to display
the nag note, to be acted on elsewhere. My guess, since nothing is moved off
the stack pointer after it's called, is that it's a self-contained procedure.
But I'm not confident enough in my assembly yet to be making a statement like
that. [As it turns out later, I was part wrong on this anyway.] So an easy
test to find out what it really is, I decided, would be to NOP pretty much the
whole RegRoutineAnnoying subprogram:
link a6,#$0000
nop
nop
...
nop

unlk a6
rts
dc.b $92,'RegRoutineAnnoying'
dc.w #$0000

So now the entire subprogram is just link and unlink. We now go into Hermes,
set a break on A891 just for good measure, and log in.

Whoa! It breaks in RegRoutineAnnoying, and all the code is still there. What
the hell? This is something that took me a little bit to realize, and I still
keep on forgetting to do it sometimes. Hermes doesn't give a shit what's in
your CODE resource. What it looks at is the XHRM. So quit Hermes, take your
modified CODE and paste it back in the XHRM. Now re-open Hermes and try again.

It looked to me like this worked. It looked so much like it worked, that I
even sent it to oleBuzzard and asked him to try it out. The next day he mailed
me back, though--something was wrong.

Experimental Error!
While testing the crack, I had been using only one test file. If the file came
up, good; if Whimsy's nag came up, bad. Only two possibilities. oleBuzzard
tried it with more than one file though, and quickly realized that it kept
picking the same file. When I heard about this I was pretty annoyed with
myself for not realizing that no call to _Random meant no randomness. I had
been wrong that it was self-contained. No, RegRoutineAnnoying got data out of
itself somehow, though without the stack pointer. Global variables are my best
guess.

So it was back to work. What to do, what to do? My first idea was to check out
all the branches in RegRoutineAnnoying and ShowScreen, to see if there was any
consistent difference between when it showed a file message or the nag.
Annoyingly, there wasn't. To examine this for yourself, break at _Random and
step through, recording each branch through the end of ShowScreen. Deciding to
play around nonetheless, I changed one and got the somewhat gratifying result
of either seeing a file displayed, or nothing. No more nags, but still not
perfect.

My next idea was to try and get Whimsy to let me register it with an otherwise
illegal code. An little under an hour or so of dicking around got me the
chance to enter a code, but things were so fucked up to get there that I
couldn't make it work any further.

Well duh.
Finally, it hit me--RegRoutineAnnoying, and RegRoutineCool. Both have
_Random's, but one is defined as annoying and one as cool. So we go back to
CheckCode 01F0:
lea RegRoutineAnnoying,a1 | 43FA F156 | C˙ÒV

This says RegRoutineAnnoying because Resorcerer is interpreting the actual
instructions given the location of RegRoutineAnnoying in the code. What it
really looks like is:
lea *-$0EA8,a1

(To change between these, hit cmd-2, for "Routine-Relative Offsets" in the
Code menu.)

So we're moving backwards from where we are (absolute offset 281E) to absolute
offset 1976. Doing the math, we find that 281E-0EA8 does in fact equal 1976.
Cool, nothing weird there. However, the hex code for the line is "43FA F156".
-0EA8, as should be apparent, does not appear here. So I had to fiddle a bit
to see what was going on.

If we set the second word of the hex (F156) to FFFF, it points backwards just
one. Whoops. So apparently the amount it branches up is the difference between
FFFF and what you give it. (Branching down, you just give the change in
offset.) RegRoutineCool is at absolute offset 1A2E. We're at 281E and want to
go to 1A2E. 281E-1A2E finds the difference between the two offsets: 0DF0.
Subtract this from FFFF (65536), and get F20E. We put this in the second word
of the line's hex code, save, and close the code window. Sure enough, when we
open it again, the line reads:
lea RegRoutineCool,a1

So now, instead of going to RegRoutineAnnoying, ShowScreen will call
RegRoutineCool. Incidentally, in case you're not sick of hex by now, this is a
system called two's complement, which is used to have a long word (4 bytes) go
from -32767 to 32767, rather than zero to 65536. The system goes from 0000 to
7FFF for positive numbers. 8000 then equals -32767, 8001=-32766, to FFFF=-1.

Back to the story. Changing worked in all of my trials, and oleBuzzard is
testing it as I write this. I'm pretty confident this one will work.

[Next day...]
Sure enough, it's good! Another happy crack. My thanks to oleBuzzard for
acting as a "beta tester" with his board to make sure this was truly cracked.
It seemed like it was, but with random things you can never be too sure. No
sense in sending out something that's going to break on people.

Phew!
This one was somewhat tough, but very interesting. I got the first (flawed)
crack done in a night, but finding the stuff about the way LEA was working and
everything took me another day or two. Then another two days to figure out the
RegRoutineCool solution. There are some other Hermes externals I'm working on
which are just hellish, but I picked up some things here that will help me
with them. I don't know if I'm up to cracking them yet, but I'll sure be
trying. I'd say which ones, but I hate vaporware. You'll know if I crack them,
and if I don't, no one's left hanging.

So long, farewell, auf wiedersehen, goodbye...
I'd like to acknowledge (as I realize I haven't before) The Shepherd's
excellent work on his "Assembly for Cracking" file, which was what sparked
this series. If you're reading this and haven't already, look for that file as
well. I use it whenever I have an assembly question (this is fairly frequent),
and it's very rarely left me unanswered.

If you've done some Mac programming in C or Pascal, you might also want to
think about picking up a copy of "Debugging Macintosh Software with Macsbug,"
by Konstantin Othmer and Jim Straus. It's not a Macsbug reference, but instead
talks about how various Mac toolbox things and some general code is translated
into assembly, and how to watch these things in Macsbug. Published in '91, so
it's a little dated, but it's still great for seeing what some things in
assembly mean. Apple publishes a straight Macsbug reference, but the store I
went to didn't have it. I don't know how it could be incredibly better than
this one, but if anyone has any comments on it, I'd like to hear them.

Also, I hear that this series is actually helpful and interesting to people.
I'm thrilled to hear this. When I started, blasting out whole procedures in
Resorcerer, the whole thing seemed like a novelty. Cool, but not actually so
useful. It wasn't until oleBuzzard suggested I write a file about it that it
even hit me other people might be interested. But interested people were, and
it's even spurred at least one other person to find and publish his own crack
for Dirt Bike 3.0. (Seeing this was a real head rush for me--way to go,
CyboBoy.)

Any and all comments on this or other MacCracking files can go to
an407599@anon.penet.fi, or Observer on Kn0wledge Phreak (719-578-8288) or (I
love my life) The Keep.

Coming up in MacCracking IV: ????? If I can finish the Hermes externals I
mention above, I'll do that. I might also revisit Net Watchman with my
newfound Macsbug skills. But I'm always on the lookout for new things to work
on, so if you have something you want cracked, or want a fresh viewpoint on
something you're working on yourself, please feel free to send it to me. No
promises of course, but I'm happy to take a crack (nyuk nyuk) at anything you
want to throw my way.

I'll also do the same speech I did for Relax--distributing cracked shareware
is just mean to its authors, real people without whom we'd have a lot less
cool software. Post this file anywhere you think people will be interested,
but please don't distribute a cracked Whimsy or the cracker to the masses.
Thanks.

And that's it. Hope you had an OK time following this, it turned out to be
much longer than the previous files. Until IV, so long!

A parting note from the "Two for the price of one" department...
I sometimes use a program called GraphicConverter (v1.7.7 /1) which uses a nag
system identical to Relax: it pops up a dialog box you have to wait to
dismiss. The crack for this took me well under an hour, and it's so similar to
what I described in file 1 I'm not even going to dignify it with its own file.
But if you want a little basic practice (or an upper after too many
unsuccessful hours in Macsbug), it's a good one to check out.

